Tuesday, March 24, 2009

Forcing

The Earth's climate changes in response to external forcings, including those related to greenhouse gases, variations in its orbit around the Sun (orbital forcing),[9][10][11] changes in solar luminosity, and volcanic eruptions. There are also positive and negative feedbacks which determine how the climate will respond to external forcing.

None of the effects of forcing are instantaneous. The thermal inertia of the Earth's oceans and slow responses of other indirect effects mean that the Earth's current climate is not in equilibrium with the forcing imposed. Climate commitment studies indicate that even if greenhouse gases were stabilized at 2000 levels, a further warming of about 0.5 °C (0.9 °F) would still occur.

Global dimming, the gradual reduction in the amount of global direct irradiance at the Earth's surface, may have partially mitigated global warming in the late 20th century. From 1960 to 1990 human-caused aerosols likely precipitated this effect. Scientists have stated with 66–90% confidence that the effects of human-caused aerosols, along with volcanic activity, have offset some of the global warming, and that greenhouse gases would have resulted in more warming than observed if not for these dimming agents.

Ozone depletion, the steady decline in the total amount of ozone in Earth's stratosphere, is frequently cited in relation to global warming. Although there are areas of linkage, the relationship between the two is not strong.

Greenhouse effect

The causes of the recent warming are an active field of research. The scientific consensus[14][15] is that the increase in atmospheric greenhouse gases due to human activity has caused most of the warming observed since the start of the industrial era, and the observed warming cannot be satisfactorily explained by natural causes alone. This attribution is clearest for the most recent 50 years, which is the period when most of the increase in greenhouse gas concentrations took place and for which the most complete measurements exist.

The greenhouse effect was discovered by Joseph Fourier in 1824 and first investigated quantitatively by Svante Arrhenius in 1896. It is the process by which absorption and emission of infrared radiation by atmospheric gases warm a planet's lower atmosphere and surface. Existence of the greenhouse effect as such is not disputed even by those who do not agree that the recent temperature increase is attributable to human activity. The question is instead how the strength of the greenhouse effect changes when human activity increases the atmospheric concentrations of particular greenhouse gases.

Recent increases in atmospheric carbon dioxide (CO2). The monthly CO2 measurements display small seasonal oscillations in an overall yearly uptrend; each year's maximum is reached during the Northern Hemisphere's late spring, and declines during the Northern Hemisphere growing season as plants remove some CO2 from the atmosphere.

Naturally occurring greenhouse gases have a mean warming effect of about 33 °C (59 °F), without which Earth would be uninhabitable. On Earth the major greenhouse gases are water vapor, which causes about 36–70 percent of the greenhouse effect (not including clouds); carbon dioxide (CO2), which causes 9–26 percent; methane (CH4), which causes 4–9 percent; and ozone, which causes 3–7 percent.

Human activity since the industrial revolution has increased the atmospheric concentration of various greenhouse gases, leading to increased radiative forcing from CO2, methane, tropospheric ozone, CFCs and nitrous oxide. The atmospheric concentrations of CO2 and methane have increased by 36% and 148% respectively since the mid-1700s. These levels are considerably higher than at any time during the last 650,000 years, the period for which reliable data has been extracted from ice cores.Less direct geological evidence indicates that CO2 values this high were last seen approximately 20 million years ago. Fossil fuel burning has produced approximately three-quarters of the increase in CO2 from human activity over the past 20 years. Most of the rest is due to land-use change, in particular deforestation.

CO2 concentrations are expected to continue to rise due to ongoing burning of fossil fuels and land-use change. The rate of rise will depend on uncertain economic, sociological, technological, and natural developments. The IPCC Special Report on Emissions Scenarios gives a wide range of future CO2 scenarios, ranging from 541 to 970 ppm by the year 2100. Fossil fuel reserves are sufficient to reach this level and continue emissions past 2100 if coal, tar sands or methane clathrates are extensively exploited.

Solar variation

An alternative hypothesis is that recent warming may be the result of variations in solar activity. A paper by Peter Stott and colleagues suggests that climate models overestimate the relative effect of greenhouse gases compared to solar forcing; they also suggest that the cooling effects of volcanic dust and sulfate aerosols have been underestimated.They nevertheless conclude that even with an enhanced climate sensitivity to solar forcing, most of the warming since the mid-20th century is likely attributable to the increases in greenhouse gases. Another paper suggests that the Sun may have contributed about 45–50 percent of the increase in the average global surface temperature over the period 1900–2000, and about 25–35 percent between 1980 and 2000. In 2006, Peter Foukal and colleagues found no net increase of solar brightness over the last 1,000 years. Solar cycles led to a small increase of 0.07 percent in brightness over the last 30 years. This effect is too small to contribute significantly to global warming. The general view is that the combined effect of the two main sources of natural climate forcing, solar variation and changes in volcanic activity, probably had a warming effect from pre-industrial times to 1950 but a cooling effect since.

Solar variation over the last thirty years.

One predicted effect of an increase in solar activity would be a warming of most of the stratosphere, whereas an increase in greenhouse gases should produce cooling there. The observed trend since at least 1960 has been a cooling of the lower stratosphere. Reduction of stratospheric ozone also has a cooling influence, but substantial ozone depletion did not occur until the late 1970s.

Another hypothesis related to solar activity is that magnetic activity of the sun deflects cosmic rays that may influence the generation of cloud condensation nuclei and thereby affect the climate. Another paper found no relation between global warming and solar radiation since 1985, whether through variations in solar output or variations in cosmic rays. Henrik Svensmark and Eigil Friis-Christensen, the main proponents of cloud seeding by galactic cosmic rays, disputed this criticism of their hypothesis. A 2007 paper found that in the last 20 years there has been no significant link between changes in cosmic rays coming to Earth and cloudiness and temperature.

No comments: